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Abstract. The Industry 4.0 movement is driving innovation in 
manufacturing through the application of digital technologies, leading to 
solid performance improvements. In this context, this paper introduces a 
real-time analytical framework based on predictive, simulation and 
optimization technologies applied to decision support in manufacturing 
systems, enabled by an underlying reference implementation of an open 
Industrial Internet of Things (IIoT) platform. This architecture integrates 
critical equipment, manufacturing and corporate systems through a Unified 
IIoT Cloud Platform. A real case study on the aeronautic industry 
demonstrates the proposal feasibility of this architecture to enhance 
productivity, predict equipment failures and bring agility to react to 
unexpected events. In this case study, the monitoring tool displays the 
current status of the critical resources and the predictive tool calculates a 
probability of failure. When this probability reaches a certain threshold, the 
simulation tool is triggered to evaluate the impact of the disruption in the 
system’s productivity. Results from the tools are displayed online through 
an alert system so that each stakeholder is informed timely and in a 
contextualized way. 

1 Introduction  

Nowadays, industries need to improve performance, either due to the market demand or to 
the technological forces driven by the Industry 4.0 growth. In Industry 4.0, smart 
manufacturing is the key element. It has the power to increase flexibility, productivity and 
quality, and helps to create customized products at large scale. Moreover, Industry 4.0 
relies on the use of digital technologies, which produce and process data in real time, 
providing useful information to the manufacturing system for decision-making support [1]. 
Technologies, such as Internet of Things (IoT), big data, simulation, optimization and 
artificial intelligence are part of the development of smart manufacturing systems.  

In particular, an IoT ecosystem consists of a network of objects (such as sensors, tablets, 
machines, among others) that allows interaction and communication with each other. 
Modern factories, by capturing and combining data from many IoT objects, potentiate the 
development and use of advanced tools, to support the decision-making process and 
improve performance by monitoring processes in real-time, predicting equipment faults, 
optimizing flexible lines and implementing autonomous processes [2]. 
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Different decision support systems (DSS) have been proposed in literature, however 
few combine Data Science, Simulation and Optimization tools for online diagnostic and 
planning. Additionally, having a system with the ability to monitor the shop floor in real-
time enables companies to behave fast and react timely to constantly changing demands. 

This paper addresses one of the manufacturing digital transformation trends by 
presenting a DSS framework with real-time monitoring capabilities that considers a hybrid 
approach of predictive, simulation and optimization technologies connected through an 
open industrial IoT (IIoT) platform. A real case study on the aeronautic industry 
demonstrates the proposal feasibility of this architecture to enhance productivity, predict 
equipment failures and bring agility to react to unexpected events. 

Section 2 introduces proper concepts of IoT technologies and DSS. Section 3 presents 
the decision support framework and the IIoT architecture. Section 4 describes the 
application case of the DSS framework on the aeronautic industry. The last section 
indicates some conclusions and remarks. 

2 Background  

The industry 4.0 technologies have enabled manufacturing companies to create intelligent 
systems that improve the decision-making process. In this context, the information systems 
that support business decision-making activities have received several advances [3]. 

DSS vary according to their objective, frequency of decision-making, degree of 
guidance, among other criteria [4]. [5] points out the importance of DSS on the design, 
scheduling and control of digital manufacturing networks. Additionally, according to [6], 
the different functions of DSS includes enabling access, visualization and manipulation of 
data; work cooperation; problem-solving through rules and algorithms; and the use of 
models for statistical, financial, optimization or simulation purposes. 

The Simulation technology has been incorporated into DSS mainly to recreate a 
physical system in a digital format, in order to evaluate and analyse its stochastic behaviour 
[7]. Also, it allows evaluating different scenarios without compromising the real system, 
such as changing the production mix or adding new machines [8]. The Optimization 
technology is incorporated into DSS to help companies defining plans or strategies which 
can maximize or minimize a given objective function, while respecting a series of 
constraints [9]. In this sense, optimization can be used in a number of industry related 
decision-making problems, such as production scheduling [10] or supply chain design [11].  

The use of machine learning in the manufacturing environment is not new [12]. 
However, with the technology advancement, it figures as a promising technology to 
generate value [13]. Data scientists are using data in order to obtain useful insights, to 
figure out root causes of problems, to make predictions, and then support decisions and 
improve productivity [14]. One application of this data-driven approach relies on asset 
management, which helps companies to achieve higher reliability and availability of 
equipment [15].  

DSS also takes into account how users interact with the available data. In this case, 
dashboards and reports are the most used interfaces in the industry, which enable decision 
makers to monitor critical processes, explore data from multiple perspectives, and manage 
processes in order to improve decisions and system performance  [16]. 

The integration of analytical and simulation models has the potential to create enhanced 
DSS. These hybrid models impel the use of commissioning-simulation methods not only to 
support periodic planning at the strategic and tactical level, but also to allow for data-driven 
execution decision-making in real time [17]. These new approaches will solve industrial 
problems with gains in flexibility, scalability and efficiency [18].  
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execution decision-making in real time [17]. These new approaches will solve industrial 
problems with gains in flexibility, scalability and efficiency [18].  

DSS are using Cyber Physical Systems to improve decision-making in a manufacturing 
facility and support automatic response with minimum human interaction [17]. 

The use of data-driven models raises the discussion about data acquisition, data 
processing, interoperability and the human-machine interaction [19]. In this environment, 
the manufacturing system is supported by an innovative platform, such as the IIoT 
Platform, that assists data management and services [20], and will generate an integrated 
and intelligent system [21].  

These technological advancements have been revolutionizing the industrial 
environment. However, the success of companies depends on the capacity to identify, 
collect and analyse the right data in order to create value [22].  

The Aeronautic industry has many variables, such as complex products, different 
fabrication processes, long development cycles, and long product lifecycles, which imposes 
challenges to ensure productivity, efficiency, quality, and production costs. An important 
factor to remain competitive is the ability to keep the operations running smoothly. 
Specifically, decisions regarding facility layout, production planning and scheduling, 
considering the necessity to react to minor daily problems, such as resources unavailability. 
This requires being able to simultaneously assess and analyse a huge amount of data and 
quickly act upon it, which is only feasible with the aid of modern DSS.  

3 IIoT based architecture for decision support in manufacturing 
system 

The proposed IIoT architecture for decision support in manufacturing system, illustrated in 
Figure 1, is composed by a Decision-Support Framework called FASTEN Suite Tool, 
which is backed by an Open IIoT platform that ensures a clean bi-directional integration 
among the system components.  
 

 
Fig. 1. IIoT based architecture for decision support system. 

This framework forms an infrastructure which is the pillar of the shop-floor digital 
transformation both in the technical and management aspects. It considers the integration of 
the FASTEN Suite Tool, corporate systems, and the production resources.  

The communication between different systems and software modules is achieved by 
means of the IIoT Platform, which provides a broker subscription API (Application 
Programming Interface).  
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3.1 Decision support framework: Real-Time Monitoring Tool with predictive, 
optimization, simulation and visualization tools. 

The FASTEN Suite Tool is composed by a Simulator-Optimizer module; a Predictive and 
Prescriptive Analytics module; and a Real-Time Monitoring module. Depending on the use 
case, the tools can be used standalone or integrated.  

The Simulator-Optimizer Tool combines discrete event simulation with linear 
programming and heuristics to create optimized solutions and test their behaviour in a 
virtual representation of the system. The Predictive and Prescriptive Analytics Tool 
encompasses an open source machine-learning library that allows deploying and managing 
predictive models. The Real-Time Monitoring Tool uses a set of data visualization tools to 
display data from the different components as dashboards and reports. In addition, it 
provides an interface where the user can interact with the tools. 

The FASTEN Suite Tool data input comes from sensors (e.g. vibration, temperature, 
acceleration, among others) and from corporate systems (e.g. Manufacturing Execution 
System (MES), Maintenance Management System (MMS), among others). The sensory 
data acquired from the production processes are conditioned and pre-processed locally (e.g. 
sampling, filtering, compressing, etc.) before being sent to the IIoT platform. The different 
tools can publish and/or subscribe to message topics, in order to request or provide data. 
The IIoT Event Repository stores all the exchanged data in specific datasets.  

This architecture provides relevant tools for the digital manufacturing transformation 
journey, including visibility, transparency and predictability capabilities, and even means to 
reach the highest maturity level of Industry 4.0, namely the autonomous adaptability.  

3.2 FASTEN Open IIoT Architecture  

The IIoT platform reference architecture, in figure 2, is based on the RAMI 4.0 (Reference 
Architectural Mode for Industrie 4.0) [23]. This architecture supports collaboration and 
integration with other relevant initiatives by framing the developed concepts and 
technologies in a common model and is part of the FASTEN project development [24].  
 

 
Fig. 2. RAMI 4.0 reference architecture [23] and the FASTEN IIoT Platform [24] 

The FASTEN open reference architecture specifies different functional components and 
their interfaces. It has two alternative brokers to connect the components: a Kafka broker, 
on the Apache lane, and an Orion Context broker, on the FIWARE lane.  

Both Apache and FIWARE lane are able to provide a message exchange mechanism 
between OPC UA sources (i.e. equipment) and the IIoT platform. The Apache lane uses a 
bidirectional MQTT to OPC UA Bridge. The FIWARE lane uses the OPC UA IoT Agent. 

The IIoT database used to store historical data generated from the different FASTEN 
data sources in FIWARE lane is CrateDB. In Apache lane, the raw IIoT data is stored in 
Apache Kafka automatically and after processing the data, it is transferred to InfluxDB. 
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bidirectional MQTT to OPC UA Bridge. The FIWARE lane uses the OPC UA IoT Agent. 

The IIoT database used to store historical data generated from the different FASTEN 
data sources in FIWARE lane is CrateDB. In Apache lane, the raw IIoT data is stored in 
Apache Kafka automatically and after processing the data, it is transferred to InfluxDB. 

4 Application Case 

The FASTEN Suite was developed and applied on a use case of the Metallic Centre Wing 
Assembly Line (WAL) at the Embraer Aerospace facility in Évora, Portugal, where parts 
from internal and external production streams are combined to form complex structures.  

The manufacturing process is partially automated, using both robotic resources and 
human operators. It produces different products that present specific tasks that can follow 
different sequences with different processing times. The line is susceptible to disturbances 
that affect the company’s overall performance, such as unbalanced scheduling, product or 
process changes, equipment breakdown, and parts unavailability. The WAL operations 
involve high complexity decision-making and require high flexibility. 
 Thus, the FASTEN Suite is presented as a solution to enhance real-time support 
material for decision-making on shop floor and help managers to deal with unexpected 
events and evaluate production scenarios. It focuses on the improvement of the Overall 
Line Efficiency (OLE), Resource utilization, and Maintenance Costs by using the ability of 
line balancing, scheduling optimization, failure prediction, and performance simulation. 

4.1 Use Case Description 

In the considered use case, the production resources of the line continually send data to the 
IIoT Platform. The Predictive Tool gets and analyses equipment data to predict the 
probability of the resources failing, while the Real-Time Tool displays that probability and 
the most relevant information from the system. When such probability exceeds a threshold, 
an alarm is triggered and the Simulation and Optimization Tool is actioned in order to 
estimate the best time to execute the maintenance operations, based on the production and 
the maintenance system information. In addition, the simulation evaluates the impact on the 
system of making such a decision. Different scenarios can be generated in loop. The results 
are displayed on dashboards in the Real-Time Tool, and an e-mail is sent to the users 
notifying the availability of the results. The sequence diagram in Figure 3 presents the flow 
of events and communications between the different components in the use case.  
 

 
Fig. 3. Use case – Sequence diagram. 
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4.2 Data Model 

The data model of this case has manufacturing systems represented by a set of production 
lines. Each line contains workstations, buffers, and transport paths. Buffers and transport 
paths could be associated with workstations. The workstation has associated operations, 
which tasks depend on each product. The tasks can be performed by fixed or mobile 
resources and their historic times are registered. Both resources can be robotic or human. 

 

Fig. 4. Use case – Data Model 

In a production line, production plans with a set of orders are executed. For each order, 
a set of products needs to be produced, and each one requires a set of operations with a 
given sequence and precedencies. The Data Model in Figure 4, also used by [17], represents 
the classes of the system, which contain specific attributes and methods.  

In addition , the following data structures are required to allow running the 
optimization, simulation, monitoring and predictive analytics tools: (i) probability 
distributions of the production times of the tasks and time that a resource takes to move or 
transport a product from one point to another; (ii) equipment data; (iii) maintenance and 
production schedules; (iv) work-in-progress in the system; and (v) resources state.  

4.3 Outcomes and Potential Results 

The DSS proposed in this paper will serve as an important tool for enhancing and 
simplifying the production and maintenance managers’ decisions relative to the WAL.  

The managers can follow the current status of the factory in a single dashboard, where 
the real-time information is presented. This enables a faster response to malfunctions in 
production resources and the increase of predictive maintenance, rather than corrective 
maintenance, resulting in lower production stoppages and lower maintenances costs. 
Besides, production managers can obtain optimized decisions in terms of layout 
configuration, namely, how many operators to allocate to each workstation, in order to 
maximize the WAL productivity. Testing disruptive scenarios, such as introducing new 
products or production plans, and adding or removing resources, is also possible through 
the usage of simulation.  

The outputs of this testing scenario are Key Performance Indicators (KPIs) of the line 
(e.g. line efficiency, resource utilization, cycle time, makespan and number of products 
produced). The proposed DSS can make a significant impact on the production system 
performance. Namely, the use case indicates that the usage of the proposed solution to test 
dynamic resource allocation can provide an improvement of 3% in productivity. 
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5 Conclusion 

The Industry 4.0 allows factories to generate large amounts of data coming from processes, 
products and components, which require the development and use of advanced tools to 
support the decision-making process and improve performance. These advancements are 
increasing the variety of approaches for DSS. It can be composed by a set of singular tools 
to organize and control data, and to extract knowledge in order to create inputs for the 
decision-makers. This paper proposes a hybrid DSS Framework that is composed by a 
Simulation and Optimization component, an artificial intelligence component and a 
visualization tool, enabled by an Open IIoT Platform. 

This combination makes the proposed DSS a multi-disciplinary tool, which cannot fit 
into a single DSS category. The proposed DSS is considered a pillar for the digital 
manufacturing transformation and can be used to face a wide range of problems, 
considering predictive, optimization, prescriptive and simulation abilities.  

The application case demonstrated the feasibility of the proposed DSS in a real case 
study on the aeronautics industry. The proposed solution is used to predict the probability 
of failure for robotic resources, to calculate the optimized scheduling considering the 
maintenance intervention and to estimate the expected production line performance. It can 
also be used to forecast the system’s behaviour in other situations such as: (i) introduction 
of new products; (ii) add, remove or change resources; and (iii) introduction of new 
production plans. This solution helps to speed up and support decision-making activities 
and to improve resource utilization and productivity of the production system.  

6 Acknowledgments 

This work has received funding from the European Union’s Horizon 2020 research and 
innovation programme under the Grant Agreement Nº 777096 and from SEPIN/MCTI 
under the 4th Coordinated Call BR-EU in CIT.   

References 

1. A. G. Frank, L. S. Dalenogare and N. F. Ayala, Industry 4.0 technologies: 
Implementation patterns in manufacturing companies, International Journal of 
Production Economics 210, 15 (2019) 

2. F. Civerchia, S. Bocchino, C. Salvadori, E. Rossi, L. Maggiani and M. Petracca, 
Industrial Internet of Things monitoring solution for advanced predictive maintenance 
applications, Journal of Industrial Information Integration 7, 4 (2017) 

3. I. Nunes and D. Jannach, A systematic review and taxonomy of explanations in 
decision support and recommender systems, User Modeling and User-Adapted 
Interaction 27 (3-5), 393 (2017) 

4. M. J. Aqel, O. A. Nakshabandi and A. Adeniyi, Decision support systems classification 
in industry, Periodicals of Engineering and Natural Sciences 7 (2), 774 (2019) 

5. H. Panetto, B. Iung, D. Ivanov, G. Weichhart and X. Wang, Challenges for the cyber-
physical manufacturing enterprises of the future, Annual Reviews in Control 47, 200 
(2019) 

6. D. J. Power, Decision support systems: concepts and resources for managers. 
Greenwood Publishing Group, (2002),  

7. S. W. Lin, V. F. Yu and C. C. Lu, A simulated annealing heuristic for the truck and 
trailer routing problem with time windows, Expert Systems with Applications 38 (12), 
15244 (2011) 

7

MATEC Web of Conferences 304, 04004 (2019) https://doi.org/10.1051/matecconf/201930404004
EASN 2019



8. N. Caldas, J. Sousa, S. Alcalá, E. Frazzon and S. Moniz. A simulation approach for 
spare parts supply chain management. In: Proceedings of the International Conference 
on Industrial Engineering and Operations Management, July 23-26  Pilsen, Czech 
Republic  (To be published). 

9. S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 
(2004),  

10. T. Loukil, J. Teghem and D. Tuyttens, Solving multi-objective production scheduling 
problems using metaheuristics, European Journal of Operational Research 161 (1), 42 
(2005) 

11. J. Basto, J. Sousa, S. Alcalá, E. Frazzon and J. Soeiro. Optimal design of additive 
manufacturing supply chains. In: Proceedings of the International Conference on 
Industrial Engineering and Operations Management, July 23-26  Pilsen, Czech 
Republic  (To be published). 

12. M. J. Shaw and A. B. Whinston, An artificial intelligence approach to the scheduling 
of flexible manufacturing systems, IIE Transactions (Institute of Industrial Engineers) 
21 (2), 170 (1989) 

13. R. Elshawi, S. Sakr, D. Talia and P. Trunfio, Big Data Systems Meet Machine 
Learning Challenges: Towards Big Data Science as a Service, Big Data Research 14, 1 
(2018) 

14. M. I. Jordan and T. M. Mitchell, Machine learning: Trends, perspectives, and 
prospects, Science 349 (6245), 255 (2015) 

15. T. P. Carvalho, F. A. A. M. N. Soares, R. Vita, R. d. P. Francisco, J. P. Basto and S. G. 
S. Alcalá, A systematic literature review of machine learning methods applied to 
predictive maintenance, Computers & Industrial Engineering 137, 106024 (2019) 

16. W. W. Eckerson, Performance dashboards: measuring, monitoring, and managing 
your business. John Wiley & Sons, (2010),  

17. R. Santos, J. Basto, S. G. S. Alcalá, E. Frazzon and A. Azevedo. Industrial IoT 
integrated with simulation - A digital twin approach to support real-time decision 
making. In: Proceedings of the International Conference on Industrial Engineering and 
Operations Management, July 23-26  Pilsen, Czech Republic  (To be published). 

18. M. Leusin, E. Frazzon, M. Uriona Maldonado, M. Kück and M. Freitag, Solving the 
Job-Shop Scheduling Problem in the Industry 4.0 Era, Technologies 6 (4), 107 (2018) 

19. T. Wagner, C. Herrmann and S. Thiede, Industry 4.0 Impacts on Lean Production 
Systems, Procedia CIRP 63, 125 (2017) 

20. H. Lasi, P. Fettke, H.-G. Kemper, T. Feld and M. Hoffmann, Industry 4.0, Business & 
Information Systems Engineering 6 (4), 239 (2014) 

21. F. Almada-Lobo, The Industry 4.0 revolution and the future of manufacturing 
execution systems (MES), Journal of innovation management 3 (4), 16 (2016) 

22. R. Geissbauer, J. Vedso and S. Schrauf, Industry 4.0: Building the digital enterprise, 
Retrieved from PwC Website: https://www.pwc.com/gx/en/industries/industries-
4.0/landing-page/industry-4.0-building-your-digital-enterprise-april-2016.pdf,  (2016) 

23. P. Adolphs, H. Bedenbender, D. Dirzus, M. Ehlich, U. Epple, M. Hankel, R. Heidel, 
M. Hoffmeister, H. Huhle and B. Kärcher, Reference architecture model industrie 4.0 
(rami4. 0), ZVEI and VDI, Status report,  (2015) 

24. R. Reis, F. Diniz, L. Mizioka, P. Olivio, G. Lemos, M. Quintiães, R. Menezes, F. 
Amadio and N. Caldas, FASTEN: an IoT platform for manufacturing. Embraer use 
case, MATEC Web Conf. 233, 00009 (2018) 

 

8

MATEC Web of Conferences 304, 04004 (2019) https://doi.org/10.1051/matecconf/201930404004
EASN 2019


